

Shallow lakes are a natural choice for monitoring

- Occur extensively throughout the network
- Small ecosystems where ecological change can be easily tracked
- Integrate and reflect terrestrial as well as aquatic conditions.
- They are relatively easy to sample
- They have distinct boundaries

Shallow lakes serve diverse ecological functions

 biogeochemical cycling by acting as sources, sinks and transformers of nutrients

- generally high rates of primary and secondary production
- high biodiversity
- provide critical habitat to invertebrates, fish, waterfowl, furbearers and amphibians

Little is known about the physical, chemical and biologic factors in these systems

These systems appear to be changing

Reduced lake surface area from Yukon Flats, NWR

Alaska's future climate

- Climate models predict strong warming in Alaska increases of 1.5-5°F by 2030
- Greatest warming during winter months
- Project 20-25% increases in precipitation
- Also project increased evaporation despite precipitation increases

Precipitation

Fire frequency and intensity

 Ice rich permafrost prevents the percolation of water into ground water maintaining lakes despite low annual precipitation

Permafrost degradation

Changes that result from permafrost degradation

Permafrost in interior Alaska is sensitive to degradation

- Permafrost is discontinuous
- Close to freezing temperature
- Influenced by fire and ground disturbance

Vital signs to be monitored in shallow lakes

- Water quantity
- Water chemistry
- Macroinvertebrate abundance and composition
- Vegetation composition and abundance

Measurable Objectives for CAKN Shallow Lake Monitoring

Detect decadal scale trends in:

- Area, distribution, and number of shallow lakes and ponds
- Water chemistry
- Structure and composition of vegetation
- Macroinvertebrate taxa richness and relative abundance

Overall Sampling Design

- Network wide approach to better monitoring water quality
- understand how lakes vary across the landscape
- Sacrifice depth for breadth

Overall Sampling Design cont.

- Randomly select lakes from population (>1 ha)
 - Up-weighted if within 2km of navigable water
 - Or floatplane accessible
- Sample each lake for two consecutive years (help explain inter-annual variation)
- Lay off for 10 years
- Resample

Within Lake Sampling Design

Emergent zone

Submergent zone

Open water

Permanent benchmark

Water sampling site

Vegetation sampling

transect

-- Macroinvertebrate sampling

transect

Measures of water quality

- •Basic chemical properties can help us understand types of lakes found in the network
- •Tell us about the chemical signature of a lake basin
- Indicate changing conditions over time

Measures of Trophic State

- Inform us about the biotic communities present
- Indicators of anthropogenic impacts
 - Chlorophyll a
 - Secchi depth
 - Total nitrogen
 - Total phosphorus

Macroinvertebrate Assessments

Good candidates for monitoring:

- Virtually ubiquitous
- Abundant
- Easy to collect
- Methods well developed
- •Response to changing conditions well understood
- Relatively immotile
- Closely tied to sediments

- Species composition
- Relative abundance
- Richness, evenness
- Dominance
- Functional feeding guilds

Vegetation Assessments

- Virtually ubiquitous
- Respond quickly to changing water levels
- Ecological tolerances are known for many species
- Taxonomy well known

- Species composition
- Percent cover
- Width of the emergent zone
- Width of the submergent zone

Physical factors

- Water depth
- Relative water level
- Bottom type/sediment composition

Two-phased approach

- 1. Retrospective analysis- 1 time effort
- 2. Long-term monitoring component annually

Denali

Wrangell-St. Elias

Ancillary Data

Permafrost monitoring

Weather monitoring

